Al aplicar la transformada de Laplace a una ecuación diferencial la convertimos en una ecuación algebraica, la cual podemos resolver para Y(s), es decir, Y(s)=G(s). Ahora, como L{y(t)}=Y(s) si pudiéramos devolvernos obtendríamos la solución y(t) que buscamos. Es decir, necesitamos de la transformada inversa L^-1{Y(s)}, para hallar la función
Si F(s) es la transformada de Laplace de una función continua f(t), es decir, L{f(t)}=F(s), entonces la transformada inversa de Laplace de F(s), escrita L^1{F(s)} es f(t), es decir,L^1{F(s)}=f(t) y(t)
No hay comentarios:
Publicar un comentario